Oxysterols regulate expression of the steroidogenic acute regulatory protein.

نویسندگان

  • S R King
  • A A Matassa
  • E K White
  • L P Walsh
  • Y Jo
  • R M Rao
  • D M Stocco
  • M E Reyland
چکیده

The steroidogenic acute regulatory (StAR) protein promotes intramitochondrial delivery of cholesterol to the cholesterol side-chain cleavage system, which catalyzes the first enzymatic step in all steroid synthesis. Intriguingly, substrate cholesterol derived from lipoprotein can upregulate StAR gene expression. Moreover, substrate oxysterols have been suggested to also play a role. To investigate whether oxysterols can regulate StAR expression, two steroidogenic cell lines, mouse Y1 adrenocortical and MA-10 Leydig tumor cells, were treated with various oxysterols and steroids, including 25-hydroxycholesterol (25 OHC), 22(R)OHC and 20alphaOHC. The majority of these compounds rapidly increased StAR protein levels within as little as 1 h. The most potent oxysterols were 20alphaOHC for Y1 and 25 OHC for MA-10 cells. After 8 h, StAR mRNA abundance also increased whereas there were no detected changes in promoter activity. Thus, in contrast to lipoprotein, oxysterols acutely increase StAR protein levels independently of mRNA abundance, and later increase mRNA levels independently of new gene transcription. Therefore, we propose that oxysterols modulate steroidogenesis at two levels. First, oxysterols may be important in post-transcriptional regulation of StAR activity and production of steroids for paracrine action. Secondly, through direct conversion to steroid, oxysterols may account in part for StAR-independent steroid production in the body.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diazinon interrupts ovarian steroidogenic acute regulatory (StAR) gene transcription in gonadotropin-stimulated rat model

Organophosphate pesticides are considered as endocrine disruptors that interfere with reproductive functions. The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a crucial hormone for a successful beginning and maintenance of pregnancy. Steroidogenic acute regulatory protein (StAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial m...

متن کامل

Diazinon interrupts ovarian steroidogenic acute regulatory (StAR) gene transcription in gonadotropin-stimulated rat model

Organophosphate pesticides are considered as endocrine disruptors that interfere with reproductive functions. The corpus luteum (CL) is a transient endocrine gland that produces progesterone, a crucial hormone for a successful beginning and maintenance of pregnancy. Steroidogenic acute regulatory protein (StAR) facilitates the rate-limiting transfer of cholesterol from the outer mitochondrial m...

متن کامل

Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells.

The steroidogenic acute regulatory protein (StAR) is required for the movement of cholesterol from the outer to the inner mitochondrial membrane, the site of cholesterol side chain cleavage. Here we describe a novel form of regulation of StAR gene expression in steroidogenic cells. Treatment of Y-1 BS1 adrenocortical cells with either low density lipoprotein (LDL) or high density lipoprotein (H...

متن کامل

The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats

Objective PCOS is the most frequent female endocrine disorder, affecting 5%-10% of women, is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and CYP19 (aromatase) mRNA in the ovary of EV-induced PCOS rat model and the effect of the treadmill and running w...

متن کامل

Liver X receptors regulate adrenal cholesterol balance.

Cholesterol is the obligate precursor to adrenal steroids but is cytotoxic at high concentrations. Here, we show the role of the liver X receptors (LXRalpha and LXRbeta) in preventing accumulation of free cholesterol in mouse adrenal glands by controlling expression of genes involved in all aspects of cholesterol utilization, including the steroidogenic acute regulatory protein, StAR, a novel L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular endocrinology

دوره 32 2  شماره 

صفحات  -

تاریخ انتشار 2004